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Abstract—Structure in data can be leveraged to enhance
learning. In many perception tasks, the embedded signals arising
from physical processes of interest naturally have structure of
high semantic relevance. However, traditional forms of remote
sensing (e.g., vision) preserve such structure only in limited
ways. This paper examines how embedded, form-fitting sensing,
referred to as physically-integrated (PI) sensing, can preserve such
structure in richer ways. While the analysis is agnostic to the
particular technology for PI sensing, for which a range of options
is emerging, especially driven by the Internet of Things (IoT),
a particular emerging technology called Large-Area Electronics
(LAE) is considered. Using synthetic data from 3D modeling and
rendering of human-activity scenes, LAE-based PI sensing and
vision-based remote sensing are emulated and perception systems
are formed, showing: (1) enhanced data-efficiency of learning
models based on PI sensing; (2) potential for selective deployment
of PI sensors in new perception tasks, thanks to robust ranking of
their value in such tasks; (3) enhanced data-efficiency of learning
models based on vision sensing, by integrating PI sensing; (4)
efficient mapping of PI-sensing features across perception tasks
to enhance transferability of learning.

Index Terms—Internet of Things, physically-integrated sens-
ing, activity detection, artificial intelligence, machine learning,
large-area electronics.

I. INTRODUCTION

WHILE learning-based perception systems have achieved
great success in many practical cyber applications,

their expansion to physical applications, pervading our living
and working environments, has been much more limited. This
has particularly been the case in human-interactive systems,
where learning and/or adaptation must be achieved within
timescales and at levels of robustness compatible with human
activities [1]. The potential challenges that have been noted in-
clude increased statistical diversity of data due to the relatively
unconstrained nature of physical processes, noise in those
processes, and noise in the sensing devices involved [1], [2].
Autonomous vehicles are one prominent example of a physical
application, in which we note that a confluence of sensing
technologies have been required, along with corresponding
algorithmic solutions, to address such challenges [3], [4].
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The focus of this paper is to explicitly explore how emerging
technologies for embedded sensing might impact learning
systems, particularly for human-activity applications. A range
of technologies for embedded sensing are emerging, especially
driven by the Internet of Things (IoT) [5]. These enable what
we refer to in this paper as physically-integrated (PI) sensing,
where sensors are directly coupled with physical objects [6].
This is in contrast with more traditional remote sensing (e.g.,
vision). The key attribute of PI sensing is that it aims to
strongly preserve structure in sensor data based on the inter-
actions between physical objects (this is somewhat different
than tactile sensing, which also involves direct coupling with
physical objects). For instance, in human-activity applications,
PI sensing follows the insight that the ways we interact with
objects around us, say something about our activities and
underlying intentions. Assigning sensors to specific objects
enables invariant and semantically-relevant structure in data,
based on our interactions with these objects. On the other hand,
in remote sensing, indirect coupling with embedded signals
(e.g., changing objects in an imager’s field of view), requires
first detecting what embedded signals are being sensed and
then forming these into semantic features. For instance, deep
convolutional neural networks (CNNs) do this by first applying
correlation filters within each layer, and then hierarchically
composing outputs into features through subsequent layers.

This paper examines how structure provided by PI sensing
overcomes the need for such ground-up learning, over a large
space of physical activities and associated embedded signals.
However, PI sensing can potentially require the deployment
of a large number of sensors, and further such deployment
must not be disruptive to the natural interactions between
objects, to ensure that structure arising from such interactions
is preserved. To address the realism of PI sensing, a particular
technology called Large-Area Electronics (LAE) is considered.
LAE has the ability to form large numbers and diverse types of
sensors, integrated in sheets that can be large (square meters),
thin (micrometers), and highly conformal [6]. A dataset for
human-activity detection is synthesized from 3D modeling
and rendering software, emulating vision sensing as well as
PI sensing, from demonstrated LAE systems. This enables
analyses comparing learning systems based on each type of
sensing, as well as approaches to minimize the number of PI
sensors, by combining PI and vision sensing and by selecting
which PI sensors to deploy.

The main contributions of this paper are: (1) the creation
of a simulation framework for evaluating different sensing
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technologies, namely LAE-based PI sensing and vision-based
remote sensing; (2) analyses, based on this framework, of
important metrics surrounding perception. Specifically, the
analyses contributed are as follows:
• Data efficiency of learning. The number of examples

required to train a model is a critical concern, particularly
in human-interactive systems. This analysis evaluates how
the structure provided by PI sensing can enable simple
linear models for activity detection, requiring much fewer
training examples, as compared to CNNs required for
vision sensing. Further, the ability to employ very simple
features based on the sensor data is demonstrated.

• Robust ranking of PI sensors. Given the cost of sensor
deployment in PI sensing, it is useful to understand
the relative value of each PI sensor within perception
tasks, so that the number of deployed sensors can be
optimized. Further, it is useful to assess how consistent
that relative value is across tasks, so that the optimal
deployment in new tasks can be robustly predicted from
the start. Significant diversity in relative value across
sensors and consistency in relative value across different
human-activity-detection deployments is demonstrated,
suggesting the potential for selective deployment of PI
sensors.

• Integration of PI and vision sensing. Particularly ob-
serving that significant benefits from PI sensing can be
derived from the deployment of a relatively small number
of sensors, the value such deployments can provide when
combined with vision sensing is explored. This can enable
increased data efficiency while further simplifying sensor
deployment. Gains in data efficiency, relative to baseline
vision sensing, are demonstrated in accordance with the
relative ranking of PI sensors, thus enabling designer
trade-offs between scale of sensor deployment and data
efficiency.

• Transfer learning with PI sensing. Structure relating
human activity with object interactions is expected to
be preserved across different human-activity-detection
deployments, suggesting significant potential for transfer
learning with PI sensing. Thus, the ability to efficiently
infer how objects in a new deployment map to those in
a previous deployment, where perception models have
already been trained, can be highly beneficial. Algorithms
for such mapping are explored, and the ability to rapidly
learn such mapping is demonstrated.

The remainder of this paper is organized as follows. Section
II provides background and related work on sensors for activity
detection. Section III gives background information on LAE
technology for PI sensing. Section IV describes the method-
ologies for synthetic dataset generation. Section V discusses
the experimental procedure and provides experimental results
for the analyses listed above, followed by discussions. Finally,
Section VI concludes.

II. BACKGROUND AND RELATED WORK

Human-activity detection, and associated sensing technolo-
gies, have been of great interest for some time [7], [8].

HUMAN-ACTIVITY DETECTION

Vision-

based

Sensor-based

Wearable

sensors

Dense sensing

PI sensing

Fig. 1. Classification of activity recognition systems in terms of the type of
sensors and the way they are deployed.

Previous works have classified the sensing technologies, as
shown in Fig. 1 [5]: (1) vision-based activity detection; and
(2) sensor-based activity detection. In this paper, we adopt
the slightly different classification and terminology of remote-
versus PI-based sensing, respectively, to distinguish based on
what we see as the critical distinction: namely, how the two
categories of sensors couple with embedded signals, yielding
corresponding structure in the sensor data.

Most recently, vision-based sensing has most dominated
in human-activity detection. This has included both video
monitoring of humans [9]–[15], as well as, recently, still-image
human-activity detection, based on analyzing human poses and
interactions with objects in a scene [16].

However, for the past 15 years, a growing number of
works have emerged employing sensor-network-based human-
activity detection [5], [8]. In some of these works, sensors
are attached to a human, namely wearable sensors [17]–[19],
while, in other works, sensors have been attached to objects in
the environment, namely dense sensors [20]. For instance, [20]
uses an RFID sensor network, which includes RFID tags with
accelerometer attached to objects for tracing object movement
to detect human activity. Going further, [21]–[24] combine
wearable and dense sensors, by using an RFID glove/bracelet
worn by humans and RFID tags attached to objects. In [21],
it is shown that user-object interactions potentially offer a
powerful way to infer activities.

Of course, vision- and sensor-based human-activity detec-
tion are not mutually exclusive. [25] combines vision-based
human tracking with RFID-based object tracking to improve
the estimation of high-level interactions between people and
objects, for application domains such as retail, home-care,
workplace-safety, manufacturing, and other. Similarly, [26]
proposes a dynamic Bayesian network model which combines
RFID and video data to automatically learn object models and
recognize activities.

Importantly, such integrative sensing in human-activity set-
tings raises concerns surrounding privacy protection, simul-
taneously with energy-aware task management, and optimal
resource allocation. [27] proposes a dynamic privacy pro-
tection model ensuring privacy even over large volumes of
data transmission for resource constrained devices. [28] uses a
reinforcement-learning-based resource-allocation approach to
achieve optimal allocation in complex networking environ-
ments. [29] proposes an algorithm to reduce the total energy
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cost of mobile heterogeneous embedded systems via energy-
aware task assignment to heterogeneous cores and mobile
clouds.

While previous research has shown distinct gains by in-
troducing sensor-based activity detection, the technologies
employed and, accordingly, the features derived from these
have been limited. For instance, requiring users to wear
gloves/bracelets can be restrictive to scale and diversity, due
to obtrusiveness of the hardware and sensing of only ob-
jects being handled, as well as to the interaction modalities
acquired, due to need for close proximity and readout of
specific state variables such as object acceleration. This work
is motivated by emerging technologies for PI sensing, which
provide greater scale, reduced obtrusiveness, and greater sens-
ing cross-section (i.e., not limited to close-proximity objects).
This is ultimately essential for preserving the targeted structure
in sensor data, given that human interactions span many
objects across their different activities, are otherwise hindered
by obtrusive technologies, and extend over the length scales
humans move about. The analysis that follows in this work
is based on such an emerging technology for PI sensing,
described next.

III. LARGE-AREA ELECTRONICS (LAE) FOR PI SENSING

Large-Area Electronics (LAE) is a technology based on
processing thin films of materials (10’s to 100’s of nanometers
thick) at low temperatures, in the range of 200◦C (as compared
to conventional silicon electronics, used for integrated circuits,
which requires processing at over 1000◦C). Low temperature
enables compatibility with a broad base of materials and
fabrication methods, leading to a wide range of transducers
for sensing and energy harvesting, which can be integrated on
substrates such as plastic, paper, glass, etc. that can be large
and conformal. LAE is thus emerging as a platform technology
for diverse and expansive (square meter) arrays of form-fitting
sensors [30]–[33]. Fig. 2a provides an illustration of some such
sensors and form factors that have been achieved [34]–[37].

Fig. 2b shows the potential value such sensors bring to per-
ception, by preserving physical structure of the embedded pro-
cesses within the sensed signals. Here, a microphone phased
array is used for enhancing audio-based activity detection, by
providing source-directionality features in addition to audio
features. Specifically, the audio features employed include the
first 12 mel-frequency cepstral coefficients (discarding 0th

coefficient), zero crossing, energy, energy entropy, harmonic
ratio, fundamental frequency, spectral entropy, and spectral
roll-off [38], while the directionality feature includes the
audio-source angle from a plane centered at and normal to
the surface on which the array is mounted. The performance
of the system is tested using ESC-10 dataset, which consists of
a labeled set of 400 environmental sound recordings equally
balanced between 10 classes [39]. During recording phase,
each class of sounds is played from its unique location with
respect to microphone array resulting in 10 different sound
source locations. As seen in Fig. 2b, a detector based on SVM
classification for the feature vector yields substantially higher
performance with the directionality feature.

(a) Examples of demonstrated systems [34]–[37].
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(b) Ability for LAE sensing systems to exploit physical struc-
ture of embedded signals.

Fig. 2. Illustration of Large-Area-Electronics (LAE) sensing systems.

LAE, as a commercial technology today, is used for solar
cells and flat-panel displays, with fabrication being performed
on 10m2 glass substrates and the industry moving to flex-
ible plastic substrates. There has been growing commercial
interesting in expanding LAE to diverse embedded-sensing
applications, with a range of LAE-based sensing systems
recently being demonstrated [40].

While the early stage of deployment of LAE in such
applications leaves many practical questions still to be an-
swered, a major driver often cited is the potential for LAE
to achieve large-scale, form-fitting sensing at very low cost
points. Recent studies focused on ramping up manufacturing of
flexible electronics propose projections suggesting competitive
cost models will be achieved in the near future [41], and in
fact specific manufacturing pathways for flexible electronics,
such as roll-to-roll (R2R) processing, open up the potential
for extremely aggressive cost models. For instance, RFID tags
have been in production using R2R processing for more than
20 years, and the number of tags sold per year has increased
with a steady decrease in the price per tag (e.g., 100M tags sold
in 2004 at $1.15 per tag and 10B tags sold in 2016 at $0.057
per tag) [42]. All of this potential has motivated an advanced
manufacturing initiative, at a level of investment of $120M by
the U.S. government and industry, to foster an industry around
flexible electronics [43].

With such activity around LAE, this paper ground the
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realism of PI sensing by considering two systems based on
LAE technology, both of which have been experimentally
demonstrated. An overview of these is provided below.

A. Floor-based Human-location Sensors

An LAE system for floor-based human-location sensing is
considered. It is based on extended-range capacitance sensing,
presented in [44]. To sense the locations of humans in a
large room, a thin (50µm-thick) array of metal electrodes is
integrated in the flooring. The proximity of humans above
each electrode changes the electrode’s self-capacitance (i.e.,
by changing the distance of coupling to electric charge carried
by humans), which can be measured by low-power electronics.
Capacitance sensing presents a number of advantages for floor-
integrated sensing. Most notably: (1) thin metal electrodes
can be easily and cheaply integrated over large areas; and
(2) absence of mechanical transduction (deformation, strain)
enhances reliability. A challenge with capacitance sensing is
stray coupling of electrodes to extraneous charge, not asso-
ciated with humans. While typical self-capacitance sensing
arrays select and drive one electrode at a time, the system
in [44] also actively drives the de-selected electrodes in a
manner that mitigates such stray coupling. This enhances the
forward projected capacitance, maintaining high sensitivity at
increased distances. Fig. 3a shows the floor-based sensors
integrated within a carpet tile, along with the sensor-readout
map showing human position.

B. RFID-reader Array

An LAE system for object detection and localization is
considered. It is based on an array of RFID readers, which
are integrated in a thin (50µm-thick) sheet and which can
be individually selected using row/column control signals.
Each RFID reader in the array, when selected, provides power
to a standard 13.56 MHz (ISO14443) passive RFID tag,
via near-field inductive coupling. The tag transmits its code
by modulating the electrical load it presents, which is then
demodulated by the RFID reader array. The RFID reader
array can cover surfaces such as floors, tables, counters, etc.,
enabling the detection and localization of tagged objects on the
surfaces. Such a system exploits the low cost and scalability
of passive RFID tags, which can be readily and unobtrusively
deployed on a large number of objects. Fig. 2b shows a version
of the RFID reader array, implemented as a flexible sheet,
along with an oscilloscope recording of the tag-side voltage
waveform arising from load modulation.

IV. SYNTHESIZED HUMAN-ACTIVITY DETECTION
(SHAD) DATASET

To emulate both vision and PI sensing, we synthesize a
dataset, referred to as the Synthesized Human-Activity Detec-
tion (SHAD) dataset, corresponding to human-activity scenes.
This is achieved using the 3D modeling and rendering software
SketchUp [45]. SketchUp provides a library of objects, which
can be selected and placed within images. Scene construction
by object placement in this way enables emulation of PI

(a) Floor-based human-location sensing system.

(b) RFID-reader array system.

Fig. 3. Experimentally-demonstrated PI sensing systems considered in this
work.

sensing, while scene rendering enables emulation of vision
sensing. Depending on their complexity, human activities can
be categorized into different levels [7]: (1) gestures; (2) atomic
actions; (3) human-to-object or human-to-human interactions;
(4) group actions; (5) behaviors; and (6) events. During
construction of the SHAD dataset, we focus on human-to-
object interactions. Two home environments are constructed,
referred to as SHAD-1 and SHAD-2, respectively, and scenes
are generated for ten human-activity classes: breakfast, dinner,
work, clean, cook, exercise, play toys, play games, recreation,
no activity. SHAD-1/2 each consists of 20k scenes (2k per
class). Each scene is rendered as a 400×400 color-pixel image,
and consists of 126/87 household objects and 9/6 humans.
Fig. 4 shows sample images from each home environment for
four human-activity classes, along with annotations of object
locations and codes (as would be derived from RFID tags).
The approach to scene construction and details of the SHAD-
1/2 datasets are provided below.

For each of the home environments, location distribu-
tions are defined for 25/26 groups of household objects
(plates/bowls, cups, cans, games, small appliances, etc.). For
each object in each home environment, ten different distribu-
tions were defined, for the ten different human-activity classes.
The dataset is synthesized for each home environment by
performing Monte Carlo sampling from the object-location
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(a) First home environment (SHAD-1).

(b) Second home environment (SHAD-2).

Fig. 4. Images synthesized in SketchUp from Monte Carlo sampling of object-
location distributions.

distributions. Scene construction by sampling object locations
in this ways enables emulation of PI sensing, while scene
rendering enables emulation of vision sensing.

A. Scene Creation

In this section, we present details of the scene-creation
methodology, given in Algorithm 1. There are four main steps
taken for scene creation:

1. For each home environment and each human-activity
class, the probability of whether or not to place a house-
hold human/object is defined.

2. For each home environment, each human-activity class,
and each household human/object a probability den-
sity function (PDF) is defined for the location the hu-
man/object can take. For object locations, the PDF em-
ployed is conditional on the sampled locations of humans,
such that a human sitting at the dining table for dinner
would cause appropriate positioning of dishes and cutlery.
All object-location PDFs also capture some probability of
random clutter. For illustration, Fig. 5 shows conditional
PDFs for various objects (such as plate, cup, can, bowl,
board game, notebook, laptop, etc.) on the dining table
in SHAD-1 for the dinner and play games classes. In
Figure 5b, the aim of placing objects at region 2 and 3
is to create clutter.

3. Scenes are constructed by placing humans/objects via
Monte Carlo sampling of the PDFs.

4. The sampled location of each object is checked to iden-
tify whether it results in overlap of humans/objects. If
overlap is found, either re-sampling of a new location is
performed for the corresponding objects, or, depending
on the object, removal from the scene is performed.

Algorithm 1 Human-Activity Detection Dataset Generation
Require: Class, ID, Ehuman−obj|Class (conditional

distribution of human/object existence in the
scene), Lhuman|Class, Lobj|Class,lochumans,rothumans

(conditional distribution of human and object locations),
Rhuman|Class,lochuman , Robj|Class,locobj (conditional
distribution of human and object rotations)

Ensure: SceneImage, LocID
1: for each human do
2: sample from Ehuman|Class

3: if human exists in the scene then
4: sample location lochuman from Lhuman|Class

5: sample rotation rothuman from
Rhuman|Class,lochuman

6: if no overlap with other humans then
7: place human to location lochuman with rotation

rothuman

8: store IDhuman and lochuman in key-value storage
LocID

9: end if
10: end if
11: end for
12: for each object do
13: sample from Eobj|Class

14: if object exists in the scene then
15: sample location locobj from

Lobj|Class,lochumans,rothumans

16: sample rotation rotobj from
Robj|Class,locobj

17: if no overlap with other humans and objects then
18: place object to location locobj with rotation rotobj
19: store IDobject and locobj in key-value storage

LocID
20: else
21: if object is crucial in the scene then
22: go back to Step 13
23: end if
24: end if
25: end if
26: end for
27: store image in SceneImage
28: return SceneImage, LocID, Class

We note that such a synthetic dataset depends on how the
PDFs are defined, and that different PDFs could be more
or less realistic in various ways. Nonetheless, the problem
of activity inference remains valid with such a dataset, i.e.,
where the aim is to determine the underlying distribution from
observed samples of the distribution. Furthermore, the way
our PDFs are defined explicitly asserts structure, i.e., by using
conditional PDFs for object locations based on sampled human
locations. Nonetheless, we believe our experiments remain
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(a) Distributions for dinner class.

Dining table
(Top view)

Region 1: board game

Region 3: cup, can

Region 2: plate, bowl, notebook, laptop

Low High
Placement probability

(b) Distributions for play games class.

Fig. 5. Distributions of object locations in SHAD-1 on the dining table for
two different classes.

valid, where the focus is on exploring how such presumed
structure can be exploited.

B. Differences between SHAD-1 and SHAD-2

Although SHAD-1 and SHAD-2 are synthesized using the
same approach, there are notable differences between them.
First, SHAD-1 (126 objects with emulated RFID tags and
up to 9 humans) has more objects and humans compared to
SHAD-2 (87 objects with emulated RFID tags and up to 6
humans). In addition to more total household objects, SHAD-
1 also has higher diversity of the objects placed, in terms
of their shapes/colors and also their locations. For example,
breakfast/dinner activities can be performed in 3 different
regions (dinning table, sofa, and kitchen), while, for SHAD-
2, only 2 regions are possible (dining table and sofa). On the
other hand, the PDFs used in SHAD-2 represent more random
clutter of objects in the scenes. Nonetheless, considering
these differences, we believe that SHAD-1 presents somewhat
greater inference complexity than SHAD-2.

V. EXPERIMENTS

In this section, we describe the experimental procedure, and
present as well as discuss experimental results for the four
analyses conducted, focusing on: data-efficiency of learning,
robust ranking of PI sensors, integration of PI and vision
sensing, and transfer learning with PI sensing.
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Fig. 6. Illustration of data-efficiency experiments using SHAD datasets.

A. Data-efficiency of Learning

This analysis employs different learning models for activity
detection using PI and vision sensing, where the structure in PI
sensor data is exploited towards a simple, linear model. Fig.
6 illustrates the overall approach taken for the experiment.
For PI sensing, a linear support-vector machine (SVM) is
applied to human/object-locations features, which are derived
by emulating the LAE floor-based capacitance-sensing and
RFID reader-array systems. For vision sensing a CNN is
applied to images of the human-activity scenes.

Linear SVM and feature extraction. A linear SVM (with
penalty parameter of 1.0) is used to create binary classifiers
for all pairs of classes, and multi-class decisions are derived
via majority rule voting as implemented by the scikit-learn
Python package [46]. A feature is computed for every object,
corresponding to the object’s proximity to the nearest human.
For the jth object, the corresponding feature hj is calculated
as

hj = e−
dj
τ , (1)

where dj is the absolute distance (in inches) between object
j and the nearest human, and τ is a decay factor. If there
is no human in the scene or if the object does not appear
in the scene, hj is set to 0. hj thus yields higher feature
values for objects close to a human while ensuring that features
are bounded in [0, 1]. This follows the insight that relevant
interactions tend to occur with nearby objects.

Deep CNN architecture. The CNN used is adapted from
the AlexNet base architecture [47], and is implemented using
Keras with TensorFlow backend [48], [49]. The network con-
tains 5 convolutional layers followed by 3 fully-connected lay-
ers as listed in Table I. The first, second, and fifth convolutional
layers are followed by batch normalization and max pooling
layers. The first convolutional layer has 48 kernels of size
11×11×3 with a stride of 4 pixels. The second convolutional
layer has 128 kernels of size 5×5×48, while the third and
forth convolutional layers have 192 kernels of size 3×3×128
and 3×3×192, respectively, and the fifth convolutional layer
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has 128 kernels of size 3×3×192. Zero-padding is used in
all convolutional layers. The first 2 fully-connected layers
have 1024 neurons each, and the last layer derives 10 outputs
via a softmax operation. We apply dropout of 0.5 between
fully-connected layers. Activation function selection and the
initialization of weights and biases are given in Table I. For
training, stochastic gradient decent (SGD) is employed with
momentum of 0.9, decay of 0.0005, and batch size of 40
samples.

Algorithm 2 Data Efficiency of Learning Analysis
Require: XPI,train, XPI,test (feature extracted PI data),

XV,train, XV,test, yPI,train, yPI,test, yV,train, yV,test
(labels), TotalSamples

Ensure: accPI , accV
1: initialize StepSize and TotalSteps
2: step← 1
3: for step ≤ TotalSteps do
4: nTrain← step× StepSize
5: Xtrain ← XPI,train(1 : nTrain, :)
6: ytrain ← yPI,train(1 : nTrain)
7: modelPI ← train.SVM(Xtrain, ytrain)
8: ypred ← predict.SVM(modelPI,XPI,test)
9: accPI(step)← accuracy(ypred, yPI,test)

10: step← step+ 1
11: end for
12: initialize StepSize and TotalSteps
13: step← 1
14: for step ≤ TotalSteps do
15: nTrain← step× StepSize
16: Xtrain ← XV,train(1 : nTrain, :, :, :)
17: ytrain ← yV,train(1 : nTrain)
18: if step == 1 then
19: modelV ← train.CNN(Xtrain, ytrain)
20: else
21: modelV ← retrain.CNN(Xtrain, ytrain,modelV )
22: end if
23: ypred ← predict.CNN(modelV,XV,test)
24: accV (step)← accuracy(ypred, yV,test)
25: step← step+ 1
26: end for
27: return accPI , accV

For training/validation/testing, each home-environment
dataset is split into training (80%) and testing sets (20%),
with balanced classes. During hyperparameter tuning, 25% of
the training set is used as a validation set. To evaluate the
detection performance versus number of training samples with
PI/vision sensing using the SVM/CNN, we start with 80/160
training samples and add 80/160 samples incrementally, at
each step re-evaluating the performance as shown in Algorithm
2. For vision sensing with the CNN, at each step we re-
train the CNN from the previous step, instead of creating a
new model. For SHAD-1, we use a constant number of 50
epochs for CNN training at each step. For SHAD-2, we use
100, 80, 50, and 20 epochs at steps 1-7, 8-50, 51-80, 80-100,
respectively. Initial learning rates are set to 0.01 and 0.0004
for SHAD-1 and SHAD-2, and each training/testing sequence

41.1 reduction in

training data
(for 90% accuracy)

PI sensing

(w/ linear SVMs)

Vision sensing

(w/ CNN)

(a) SHAD-1 (τ = 300).

4.7 reduction in

training data
(for 90% accuracy)

PI sensing

(w/ linear SVMs)

Vision sensing

(w/ CNN)

(b) SHAD-2 (τ = 100).

Fig. 7. Data-efficiency comparison of PI and vision sensing for the two home
environments.

is repeated 10 times with randomly shuffled training/testing
datasets to average the obtained results. Fig. 7 shows the
testing accuracy of PI and vision sensing. For both home
environments, PI sensing shows substantial gains in data
efficiency, with accuracy achieving the 90% point with 41.1×
and 4.7× less training data respectively (i.e., at 139/132
samples, compared to 5717/623 samples, for SHAD-1/2). We
also see that the accuracy of vision sensing converges much
more slowly for SHAD-1 than SHAD-2, owing to the greater
expected complexity of SHAD-1.

B. Robust Ranking of PI Sensors

This analysis employs Fisher score as a metric for mea-
suring the discriminative power of each feature in PI sensing
[50]–[52]. The Fisher score is derived for the proximity feature
hj associated with each object, and then similar objects (e.g.,
plates, cups, etc.) are grouped together. Then, the average
Fisher score for each group is computed, and groups of objects
are sorted according to average Fisher scores. This enables
assessment of the value different objects bring to human-
activity detection, ultimately directing how to judiciously
deploy of PI sensing.

Fig. 8 shows the ranking of object features based on the
group-averaged Fisher score, for the two datasets considered.
As seen there is significant diversity in the Fisher score,
with a relatively small number of objects having considerably
higher relative discriminative power. Analyzing this further,
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TABLE I
DEEP CNN ARCHITECTURE.

Initializers Pool Drop
Layer type # Kernels Kernel Size Kernel Bias Activation Strides Padding size rate Output shape

Input - - - - - - - - - 400×400×3
Convolution 48 11×11×3 N (0, 0.01) 0 ReLU 4×4 same - - 100×100×48
Batch normalization - - - - - - - - - 100×100×48
Max pooling - - - - - - - 2×2 - 50×50×48
Convolution 128 5×5×48 N (0, 0.01) 1 ReLU 1×1 same - - 50×50×128
Batch normalization - - - - - - - - - 50×50×128
Max pooling - - - - - - - 2×2 - 25×25×128
Convolution 192 3×3×128 N (0, 0.01) 0 ReLU 1×1 same - - 25×25×192
Convolution 192 3×3×192 N (0, 0.01) 1 ReLU 1×1 same - - 25×25×192
Convolution 128 3×3×192 N (0, 0.01) 1 ReLU 1×1 same - - 25×25×128
Batch normalization - - - - - - - - - 25×25×128
Max pooling - - - - - - - 2×2 - 12×12×128
Flatten - - - - - - - - - 18432×1
Dense 1024 18432×1 N (0, 0.01) 1 ReLU - - - - 1024×1
Dropout - - - - - - - - 0.5 1024×1
Dense 1024 1024×1 N (0, 0.01) 1 ReLU - - - - 1024×1
Dropout - - - - - - - - 0.5 1024×1
Dense 10 1024×1 N (0, 0.01) 0 Softmax - - - - 10×1

we trained SVMs with features from top-k/bottom-k groups
(using the full training set), to observe the impact on detection
accuracy. To do this, we start from k = 1 and increment k at
each step until all features are used. The resulting accuracies
are shown in Fig. 8, along with the object Fisher-score
rankings. First, we see by incrementally removing low-ranking
objects (red line), that a significant number of objects can be
removed from PI sensing, without degrading accuracy. Second,
we see by incrementally adding higher-ranking objects (blue
line), that a significant increase in accuracy is observed due
to small number of objects. Specifically, for the SHAD-1/2
datasets, an accuracy of 90% is achieved with the only 32/28
top-ranked features, as compared to 114/80 bottom-ranked
features.

Importantly, we see that there is substantial consistency in
the value of features from different objects across the two
datasets SHAD-1/2. This suggests that evaluating the value
of PI sensing on objects in one deployment enables reliable
assessment of how to deploy PI sensing on objects in another
deployment. Specifically, Table II provides a sorted list of
the top 10 objects whose features yield the highest Fisher
score from each dataset. As seen, 5 out of the top 6 object
groups are the same. Furthermore, there are 3 groups with
similar purpose of use (e.g., vacuum and handheld vacuum
have similar purpose as dust pan and floor sweeper, balance
ball has similar purpose as pilates ball). Thus, we observe
that the relative value of similar objects has substantial con-
sistency across the different human-activity detection systems,
suggesting that in a restricted deployment of PI sensing, the
optimal deployment of sensors can be readily predicted from
the beginning. This indicates that the structure provided by
PI sensing also has the potential to enhance transferability of
learning across deployments.

C. Integration of PI and Vision Sensing

This analysis explores the value of combining PI and
vision sensing. Specifically, PI sensing has the potential to
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(a) SHAD-1 dataset.
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Fig. 8. Fisher-score ranked features from objects in PI sensing and SVM
accuracy of top/bottom groups. Each accuracy data point shows the testing
accuracy of an SVM employing features from the right/left side of the data
point.

preserve structure in sensor data towards enhanced efficiency
of learning, while vision sensing incurs lower cost of sensor
deployment. Combining the two has the potential to enable
designer knobs for trading off these factors. For this, the
CNN architecture applied to vision sensing is modified by
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TABLE II
TOP-10 OBJECT GROUPS WITH RESPECT TO FISHER SCORE.

SHAD-1 SHAD-2

# Group # Group

1 chair 1 chair
2 guitar 2 guitar
3 cutting board 3 yoga mat
4 yoga mat 4 pilates ball
5 vacuum 5 cutting board
6 broom 6 broom
7 milk carton 7 dust pan
8 easel 8 board game
9 handheld vacuum 9 floor sweeper

10 balance ball 10 bowl

concatenating the features extracted from PI sensing with
the output of the second fully-connected layer. The resulting
concatenated feature vector is then provided to the last CNN
layer. To expose the designer knob, various models are trained,
scaling the numbers of PI sensors employed based on the
rankings obtained in Sec. V-B.

For testing, the procedure outlined in Sec. V-A is applied.
Fig. 9 shows the testing accuracy when combining PI and
vision sensing for the two home environments. As seen in
Fig. 9a, adding more features from PI sensing in SHAD-1
clearly and substantially improves data efficiency, even when
adding a small number of PI-sensing features. This suggests
that structure can be exploited even with modest sensor-
deployment costs, and motivates further research in learning
models combining features from the two types of sensors.
Fig. 9b shows that adding PI-sensing features in SHAD-2 has
somewhat less impact, as the simpler dataset already benefits
from more rapid learning convergence.

D. Transfer Learning with PI Sensing

This experiment explores the gains that can be derived from
transfer learning with PI sensing. Generally, the effectiveness
of transfer learning depends on the similarity of statistics
between source- and target-domain data. Given our use of
a synthesized dataset based on specified PDFs, the focus of
transfer-learning experiments is not on the ultimate effective-
ness of transfer learning, but rather on the efficiency with
which object codes (i.e., from RFID tags) can be mapped from
source-domain data to target-domain data. The motivation
behind this is that pre-programming or careful assignment of
codes to objects in a new human-activity detection system
deployment is not feasible. Instead, if the data statistics are
similar thanks to the strong structure, then rapid automatic
learning of the mapping between target- and source-domain
object codes has the potential to enable substantial gains from
transfer learning. To explore this, mapping is performed from
SHAD-2 to SHAD-1, followed by model transfer.

Feature-space mapping. To map source- and target-domain
features, we use the Informed Feature-Space Remapping
(IFSR) method [53]. This involves first deriving a vector of
meta-features. For each feature, one meta-feature is derived
for each target-domain class. Given class c and feature j,
the meta-feature vector is formed from meta-features Mj,c,

SVM-PI

CNN-Vision&PI (0, 21, 32, 80, 126 features)

(a) SHAD-1 dataset.

CNN-Vision&PI (87, 0 features)

SVM-PI

(b) SHAD-2 dataset.

Fig. 9. Testing accuracy when combining features from PI sensing with vision
sensing.

corresponding to the expected value of the jth feature within
the cth class. Next, a similarity matrix S is created by
computing a similarity score between each source feature
and target feature pair. The similarity score Si,j between the
ith source feature and the jth target feature is the negative
Euclidean distance between their corresponding meta-feature
vectors, given by Eq. 2.

Si,j = −

√√√√ K∑
c=1

|Mi,c −Mj,c|2, (2)

where K is the number of distinct classes. Finally, the feature
mapping to target features is established by mapping the
source feature that exhibits maximal similarity to the given
target feature. As a result, a one-to-many mapping is created
from the source feature space to the target feature space. We
note that objects not occurring in the available target-domain
data all lead to zero-valued meta-features, preventing proper
similarity assessment; thus, such object features are explicitly
not mapped to any source-domain feature, and are assigned a
feature value of zero during model learning and transfer.

Model transfer. After feature-space mapping, transfer
learning can be employed to enhance testing accuracy with
fewer training samples. For this, we use an Adaptive SVM (A-
SVM) model [54], and extend it to our multi-class problem. An
A-SVM aims to learn a decision vector ws by training a linear
SVM using all of the source data, and uses ws to regularize
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learning of a decision vector w using all of the available target
data. This is done by changing regularization term of a classic
SVM objective function from ‖w‖2 to ‖w−Γws‖2 as shown
in Eq. 3.

min
w,b
‖w − Γws‖2 + C

N∑
i=1

max(0, 1− yi(wT xi + b)), (3)

where Γ controls the level of transfer while C controls the
weight of the loss function, and N is the number of training
samples.

Fig. 10a shows the accuracy of the learned mapping from
SHAD-2 (source) to SHAD-1 (target) features, with respect
to the number of target domain features used for mapping.
Here, to assess accuracy, the mapping learned after using the
entire target-domain training dataset is assumed to be the true
mapping. In this analysis, the feature-extraction parameter τ
is set to 100 for both target and source data during feature-
space mapping. However, mapping accuracy represents only
one metric for assessing the data efficiency of mapping. In
particular, PI sensor data is sparse in the sense that human
activities involve interactions with a small number of the total
objects. Thus, because objects not present in the scene yield
feature values of zero, in fact many of the feature values will
be zero. Thus, an alternate metric is the number of times an
object is interacted with before its feature is correctly mapped
to that from the source domain. This requires defining when an
object is interacted with, which we do by saying that proximity
within 4 feet of a human is designated as an interaction.
From this, Fig. 10b shows a histogram of the number of
interactions before correct mapping of a feature is achieved.
As seen, the majority of objects require very few interactions
(median: 5, mode: 1). However, a few objects require a rather
large number of interactions. The primary reason for this is
the sparsity of PI data, which is observed to cause notable
variance in the meta-feature values until the number of target-
domain training samples increases adequately (i.e., because
meta-feature computation involves an average taken over the
number of available target-domain training samples).

Fig. 11 shows the target domain transfer accuracy for three
different scenarios: (1) when there is no transfer (SVM-
Target); (2) when there is transfer from source data using the
feature mapping and A-SVM (A-SVM); and (3) when there
is transfer from source data using a pre-determined feature
mapping, i.e., using all target data for mapping (A-SVM-Pre).
For this analysis, Γ and C are set to 1 and 100, respectively.
As seen, despite the high data-efficiency of learning to begin
with (SVM-Target), data-efficiency is improved with transfer
learning, when there is very little target data (less than 100).
Further, the difference between the A-SVM and A-SVM-Pre
cases shows that there is further room to enhance efficiency
with transfer learning by focusing on increasing the efficiency
of feature mapping.

VI. CONCLUSION

With sensors being the main source of data in perception
systems and subsystems, this paper evaluates how structure
enforced in the sensor data by the sensing technology itself

(a) Mapping accuracy versus training samples.

≈

Mean : 30.53

Median: 5

Mode : 1

Outliers at:

71, 74, 79, 106, 109, 149,

167, 170, 173, 199, 206,

229, 250, 266, 304, 424

(b) Histogram of number of interactions in target domain with object before
correct feature mapping is achieved.

Fig. 10. Data efficiency of feature space mapping performance for PI sensing.

SVM-Target

A-SVM

A-SVM-Pre

Fig. 11. Testing accuracy with transferring learning from SHAD-2 (source)
to SHAD-1 (target).

can enhance learning algorithms. Specifically, the focus is on
physically-integrated (PI) sensing, where sensors are directly
coupled to embedded signals expressing human interaction
with objects, in contrast to remote sensing, where sensors are
not directly coupled to the embedded signals. The structure
enforced by PI sensing follows from the assertion that human
interactions are indicative of human activities and intentions.
By starting with demonstrations of PI sensing and emerging
PI-sensing technologies, namely based on Large-Area Elec-
tronics (LAE), a simulation environment is developed that
emulates specific, demonstrated PI sensors and conventional



2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2883905, IEEE Internet of
Things Journal

OZATAY AND VERMA: EXPLOITING EMERGING SENSING TECHNOLOGIES TOWARDS STRUCTURE IN DATA FOR ENHANCING PERCEPTION 11

vision sensors, to create two Synthesized Human-Activity
Detection (SHAD-1/2) datasets. Analysis is performed to
evaluate: (1) the data efficiency of learning; (2) the ability
to predict which PI sensors offer the greatest discriminative
value; (3) the prospects of integrating PI and remote sensing;
and (4) the prospects of transfer learning with PI sensing
across smart-home deployments. Results show that PI sensing
substantially enhances data efficiency of learning and that high
discriminative power can be achieved with a small, but select,
set of PI sensors, potentially addressing the costs of PI-sensor
deployment. Results also show that integration of PI and
remote (vision) sensing yields a further trade-off between data
efficiency and sensor-deployment cost, and suggests this as a
promising area for exploring new sensor-fusion algorithms.
Finally, given the likelihood of high transferability of models
for human-activity detection across smart-home deployments,
this work exposes the potential and some of the challenges
with mapping PI-sensing features across deployments for
transfer learning.
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